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l. Introduction

Let L be a finite geometric lattice of rank r. The numbers

wl, w2, w3, Sely wr_l of points, lines, planes, ..., copoints of L

are its Whitney numbers of the cecond kind. Rota has conjectured that

the sequence {wk1 is unimodel: W, > min(wi,wk1 vhen 1 < j <k, a

J
property known to hold for the partition lattices [8], [9], matroid
designs [11], and all geometric lattices with eight or fewer'points i3l

A related conjecture is W, > W _ when k < r/2, which holds with

equality for modular geometric lattices. The latter has been proved in

the case k =1 [1], [6], and the equality W, _, =W shown to

characterize modular geometric lattices (6]. Apparently little else is

known in general about the sequence {wkw, except that wk > wl for

1 <k < r-1, which follows easily from W__ > wl.(l) We prove here

(Theorem 1) a lower bound for W, in terms of k,r, and the number

n = wl of points of L, which improves the above bound substantially

when 2 <k < r-2, Our bound is attained only by the direct product

of a modular plane and a free geometry when 2 <k <r-2, and for

these lattices equality holds for all k. In view of the representation
of a finite lattice by its Hasse diagram, the term '"slimmest" is

accordingly a fitting description of these extremal lattices. S—
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The integers W =T u(0,x), the sum over all x of rank k in

a geometric lattice L with Mobius function p, are its Whitney numbers

of the first kind. These are the coefficients in the characteristic

(or chromatic) polynomial of I, of importance in the critical problem [k].
A well-known conjecture in graph theory asserts that the alternating

sequence {wk} is unimodal in aebsolute value for graphic geometries,

and empirical evidence suggests this may hold in general. An inequality

for w_ = u(0,1) in terms of the point-set-partition induced by a

maximal chain in L appears in [7]. We establish here (Theorem 2) a

lower bound on (-l)k w, in terms of k, r, and n, and show that

equality holds when k > 2 only for the direct_product of a line and
a free geometry.

Our results are stated in 83 following a brief section (§2) on
preliminaries. In % we verify that equality holds in Theorems 1 and
2 for the lattices described. The proofs of these theorems appear in

§ and §G respectively.
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2. Preliminaries

Definitions and results required in the sequel are summarized in
this section. A detailed treatment of geometric lattices may be found
in [2]) or [}].

Let L be a finite lattice. If x <y, the interval [x,y] of
L is the sublattice [x,¥) = {z|x <z <y}. An element y covers x

iff x<y and x<z <y implies z =y, thus [x,y] = {x,y}s A

point of I is an element covering O, the minimum element of L.
A copoint of L is an element covered by 1, the maximum element of L.

A chain of length k in I 1is a linearly-ordered subset {xi‘xo< x1< eee < xk]

i‘ of k +1 elements. A maximal chain in [x,y] is a chain {xi|x0< x1< ee o< xk}

such that Xy = X, 4 =Y and Xq covers xi-l’ 1 <i<k. L satisfies

the Jordan-Dedekind chain condition iff all meximal chains in any

interval (x,y] are of equal length. 1In this case the rank p(x) of
x € L is the length of a meximal chain in [0,x]. The rank of L is
the rank of its unit element 1.

A finite lattice L is geometric when y covers x is equivalent

to y =x Vp for some point p X x. Equivalently, the elements

covering an element x <1 partition the set of points X x. The

T’ =] Jordan-Dedekind chain conditions holds in a peometric lattice, and its

|

. rank function satisfies the semimodular incquality o(x Vy) + p(x Ay) <
B o(x) + p(y). L is modular if equality holds for all x,y. If L is

h geametric of rank r, elements of rank 1, 2, 3, r-1 are points,

lines, planes, copoints, respectively. Every interval of a geometric

lattice is geometric, and direct products of (modular) geometric lattices
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arc (modular) geometric lattices.
Geometric lattices are the order-thcoretic counterparts of

combinatorial geometries [4], or matroids, the clements of the lattice

representing the closed subsets of points of the gecmetry, ordered by
inclusion. We shall employ geometrical language where convenient in
arguments below,
A separator of a geometric lattice L is an element x # 0,1
such that L ™ [0,x] x [x,1]s If x is a separator, then so is
y = Vip|p a point X x}, and the mapping z v z Vx is an isomorphism
between [0,y] and ([x,1]. L 4is connected if it has noc separators.
An isthmus is a separator which is a point of L. Then p is an isthmus
of L iff there is a copoint ¢ such that q < c for every point gq £ pe
The truncation of a gcometriq lattice L 6f rank r is the subset
{x € L!p(x) # r-1} in the induced order, a geometric lattice of rank
r-l. By a sequence of r-k truncations L may be reduced to a
geometric lattice L' of rank k whose copoints are the elements of
rank k-1 in L. We call L' the truncation of L to rank k.

The free geometry (boolean algebra) with j points is the

geometric lattice (of rank j) in which every point is an isthmus, and
is isomorphic to the lattice of all subsets of its point set under the
inclusion order. A Jj-point line is a geometric lattice of rank two

with J points. A Jj-point projective plane is a connected, modular

geometric lattice of rank three with j points. Each of these three
types of lattices is modular, hence so are direct products of them.

The Mdbius function [10] of a finite lattice I is the function

p:l X L + Z defined recursively by ,(x,y) =0 if xXy, u(xy) =1

if x =y, and p(x,y) = -E{u(x,z)|x <z <y} if x<y.
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3. Main Results

Let L be a finite geometric lattice of rank r with n points

and rank function ¢. The Whitney numbers of 1L, of the second kind,

are the integers

(3.1) W= |{x €Llo(x) = x}|, 0<k<r.

% Thus Wy =W, =1 and W =n by definition. Basterfield and Kelly (1)

? and Greene [6] proved the inequality
(3.2) W _>n, 1<k<r-l.

Greene showed further that equality holds in (3.2) for some k,

2<k<r-l, iff k =r-1 and L is modular. If 1 <k <r-1,

(3.2) follows immediately from
% (3'3) wr-l Z n,

on application of (3.3) to the truncation of L to rank k + 1.

i Inequality (3.2) is strengthened substantially when 2 <k <r-2 by

; Theorem 1. ILet L be a finite geometric lattice of rank r with n

points. Then

i (34) W > G IDO-T) (), 0<k<r.

When r >4, equality holds in (3.4) for some k, 2 <k < r-2, iff
L is (isomorphic to) the direct product of & modular plane and a
free geometry.

By Greene's result, the latter conclusion is valid also when

equality holds in (3.4) for k =2, r = 3, in which case the free

.

geometry is trivial (rank zero).
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The extremal lattices may be described in greater detail, A
modular plane is either projective, or if not connected, the direct

product of a line and a one-point free geometry. Denote by FJ’QJ’PJ

a Jj-point free geometry, line, and (arbitrary) projective plane, re-

spectively, and let

(3.5) Q(4,3)

X F,
Qi Js

(3.6) P(i,3j) = P, X F‘j.

Then the conclusion when equality holds in (3.4) may be stated:

L¥Qn-r + 2, r-2) or L=TP(n-r + 3, r-3).

The Whitney numbers of the first kind are the integers

(3.7) w, = (E) u(0,x), 0<k<r,
p(x)=k

i being the Mobius function of L. Since u(x,y) is nonzero when

x <y, with sign (-l)p(y) - o(x) [10], w, is nonzero with sign

k
(-l)k- Thus
+ k
(3.8) wy = (-1)" w
is positive. Trivially, wh o= 1l and w+ = N

(0} 1l

Theorem 2. Let I be a finite geometric lattice of rank r with n

points. Then

(39) w2 (GIPm-x)+ () 0<Lk<r

Equality holds in (3.9) for some k, 2 <k <r, iff L is isomorphic
to the direct product of a line and a free geometry.

Thus L ¥ Q(n-r + 2, r-2) when equality holds.
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4, The Extremal Lattices

In this section we verify that equality holds in (3.4) for
Q(n-r + 2, r-2) and P{n-r + 3, r-3) and in (3.9) for Q(n-r + 2, r-2).
In the proof of Theorem 2 (8§6), we shall require the fact that (3.9)
is a strict inequality when k > 2 for P(n-r + 3, r-3), a result most
conveniently established at this point.

In computing the Whitney numbers of a direct product, it is uséful

to consider the polynomials

a) o(d) =T \r= P(x)
€.

®.2) %) = £ p(o,x)A" =P
x€L
r-k

where r 1s the rank of L. Thus the coefficient of A\ is wk

in (4.1) and w, in (4.2). The latter is the characteristic

Eolznomial of L.

For a direct product L = L1 X L2 of geometric lattices,

p((XJY)) (o °1(’l‘) + 02(}’) and IJ-((O,O),(X,Y)) = L{O,X)ua(O,y) [10];

thus

.3) o) = @ (Mo, (A),
(o) x(2) =w1(x)y2(x).

The polynomials ®(1), X(A) are well-known for a free geometry,
line, and projective plane, and are given below in Table 1. Since the

existence of P, implies J = 32+ 8 + 1 for some integer s > 2, we

J
make this substitution where convenient.

i =z ek e A —




_o(\) ()
F, gy ot 2 caridy 27
’ 1=0 i=0
|
2 2
Qj AT+ A+ AT - 3 A+ (3-1)
P M 3%+ 32 e e e 4 AT 4
s(sz+ s + 1)\ - s3,
J = 32+ s + 1.

Table 1.

From (4.3) and Table 1 we obtain the () - coefficient of g

for Q(n - r + 2, r-2), P(n - r + 3, r-3), respectively, as

@) CrH+CiDm-r+2)+ (o0,

@6)(r;%+(;:ﬁh_r+3)+¢:gﬂn-r+ﬂ+(;:?.

Using Pascal's identity, both (4.4) and (4.5) reduce to the right-hand
side of (3oh ) .
From (4.4) and Table 1 we obtain the X(A)-coefficient of

(-1)k K for Q(n - r + 2, r-2) as

m.6) (¢ 2 Y+ (n-r+ 2)(; 2 f) + (n=-r+ l)(; i S),

which simplifies to the right-hand side of (3.9), and for P(n - r + 3, r-3)

@a)(’;%+(£+s+nq:§)+q£+s+nq:g)+ﬁq:gy




Setting n-r + 3 = s2 + s + 1 and using Pascal's identity, we can

rewrite (4.6) as

.8) (¢ " 3) 4 (5% s + 1)(; 2 %) +2(s% s - %)(i . 3) . (5% & - l)(; E g).

The first two terms in (4.7) and (4.8) are equal, but if 2 <k <r, at

least one of (; 3 g), (; % g) is positive. Since s > 2, s(32+ s +1) >

2(s2 + s - %) and 82585 48 - 1, hence (4.7) is strictly greater

than (4.8) when 2 <k <r.
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5e Proof of Theorem 1

We proceed now to the proef of inequality (3.4). The following

notation will be used, for an interval [u,v] of L.

{x € [u,v]]|o(x)

il
n

AJ(U,V) J}’ aj(u,v) = IAj(u;V)"

{x £ [u,v]|o(x)

]
i

BJ.(U,V) j}} BJ(U,V) = |BJ.(11,V)lo

Thus W, = aj(u,v) + Qj(u,v). Since Aj(u,v) is the set of elements
of rank j - p(u) in the interval (u,v], we have

(5.1) wj-p(u)([u’v]) = aj(u,v).

We shall require the following lemma. A proof is given in our related

paper [5, Cor. to Thm. 4].

Lerma. For any point p of 1,
(5.2) (12(}),1) + Br-].(p’l) > al(0’1)°

The proof of (3.4) will be by induction on the sum r + k. When
r + k <5, the only nontrivial case is r = 3, k = 2, where (3.4)
follows from (5.2) (or from (3.3)). As the inductive hypothesis we
assume that if L' 1is a geometric lattice 9f rank r' with n'
points, then (3.4) holds for al1 k' such that r' + k' <r + k, where
r + k> 6. By (3.3) we may assume 2 <k <r-2, so r> L,

Fix a point p of L. Then

(5:3) W =0 (p,2) + py(p,1)e




PR

1)

Let £ - a?(p,l) = Wl([p,l]). The interval [p,1] is of rank r -1,

so by (9.1) and the inductive hypothesis,

Gd) o) > CoD-re1)+ C T

To obtain a lower bound on @ (p,1), we first observe that y € A, (py1)

iff y = xVp for some x € Bk(p,l). The mapping x v x Vp is thus
a surjection Bk(p,l) > Ak+l(p’l)’ and so partitions Bk(p,l) into
inverse images of elements of Ak+l(p’l)' The inverse image of

y € Ak+l(p’1) is the subset Ak(O,y) - Ak(p,y) of Bk(p,l), of
cardinality a (0,y) - o (p,¥). By (5.2), o (0,y) - o4 (p,y) >

o (0,y) = ay(p,y). Thus

(5.5) B, (p,1) > > oy (pyy)e

(O,y) - E
ai 4 ve, , (ps1)

The two sums in (5.5) may be written as follows on interchanging the

order of summation in each.

(r-.c) z (O’ ) = ( :l) + X ( Vq’l) =
e et T B e iy va Y

= o, (p,1) +86A:(p,(%(0,a) - 1) o, (a,1).

i

(5.7) T a,(p,y) =

(2,1).
ve, ,, (p,1) afA (p,l)ak+1

Substituting (5.6) and (5.7) into (5.5) gives
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(5.8) B, (p,1) > &, (p,1) + i; é’}(o 8) = 2) o . (a,1).

Writing ak+1(a,1) = ak+l(a,l) - (; : ) + (r i ?) in (5.8), and

noting that

z (o, (0,2) - 2)
aEAE(p,l) al :

n-1-2,

ve obtain
(5:9) A e2) 2o (1) + G I D184,
where

(5.10) Cp = I )(01(0:9') 2)(0.1,_‘_1(3.,1) = ( 1)) >0,

a€A2 Ps1

since ai(o,a) = wl([o,a]) >2 and ak+l(a,l) = wk_l([a,l]) > (r - 2)

The interval ([a,1] is of rank r - 2, and 2 <k <r-2 implies

1 <k-1<(r-2) -1, so v l([a,l]) = (r 5 2) i [ed] = F._oe

Thus equality holds in (5.10) iff for every line a on p, either
~ ~

[0,a] = F, or [a,1] = F. e

The interval [p,1] is of rank r-1l, so by (5.1) and the inductive

hypothesis

(5:12) @, (0,2) > G2 -r 1)+ (-1

We obtain finally, from (5.3), (5,4), (5.9), (5.10), and (5.11),

N Rl TR ) IS (s I a0 [ (R R I

CH+GoDo-1-0=C75Hnr) + 0.
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Suppose now that 2 <k < r-2 and equality holds in (3.4). Then
equality holds in (5.4) and (5.11) for every point p of 1L, where
L = az(p,l), and equality holds in (5.10) for every line a of L.

~

To prove that L TQn - r + 2, r-2) or L=P(n -r + 3, r-3), we
again argue by induction on the sum r + k. Thus assume that if L'

is a geometric lattice of rank r' with n' points, and equality holds
in (3.4) for some k', 2 <k' <r'-2, then L' = Q(n' - r'+2, r'-2) or
L' ZQ(n' - r' + 2, r'-3), vhenever r' + k' < r + k. The initial case
is r +k =6, when r =4, k = 2. As the proof for this case is
similar to the inductive step, it will be convenient to postpone it.
Thus we assume r + k > 7; so r > 5. Then at least one of the pairs
(r',k') = (r-1,k-1), (r-1,k) satisfies 2 <k’ <r'-2, so by the

inductive hypothesis, for every point p of L, either

(5.12) [p,1] Q24 - r + 3, r-3),

or

(5.13) [p,1] T P(L -1 + 4, ral),

where A = a2(p,1) is the number of lines of L on p. Also, from

equality in (5.10) we have for every line a of L, either [0,a] = F,

or [a,l] = F._oe

Suppose first that every line of L has two points ([0,a] = F2).

Let p be a point of L. Since r > 5, (5.12)-(5.13) imply that [p,1]
has an isthmus b. Then in L, b 4is the only line on p not on some
copoint ¢ on p. The second point q on a is thus the only point

of L noton ¢, 80 q is an isthmus of L. The number of lines on q




1k
is n =« 1, 80 by (5.12)=(5.13),

" ~ ~ ~ [Qn - r + 2, r-2) or
(5.24) L= [0,¢] x [0,q] = [p,1]) x F, = {Psn i 3: roay,

Suppose now that there is a line a of L with at least three

points. Then (a,1] = F. o+ Let w, u,, «o., u _, be the planes

on a. The join of any set of j of these is an element of rank
J+2 in L. Let » Le a point of a and suppose first that (5.13)
holds. Then there is an element x of rank four in L such that
x>p and ([p,x] is a projective plane. There are then two points

PysPp of x on different planes through a, say ul,u2, respectively.
The plane p V Py 3% Py of x intersects u, 3<i<r-2, only in p,
as otherwise ulV qu u, is of rank four. But then x contains only
two lines p Vpy, P Vp, on p, contradicting that [pyx] 18 a

projective plane, hence has no two-point lines. Thus we may assume
that (5.12) holds for every point p on a, so at most one of the
plenes on a contains more than one line on p other than a. Suppose

U 50, each contain two points off a, say Pys9y in wy and Ppsrdp
in Uy Since a has at least three points, there is a point p of
a not on either of the lines 12 v 9, Pp v Qe We then have three
lines a, p V‘pi, pPvae on p in u,, i =1,2, a contradiction.
Thus v, say, has only a single point q off a. Then q is the

only point of ‘'L off the copoint ¢ = u, Veeso V U, o hence is an

isthmus of L. The number of lines on q is / = n-1, and the

& s L ST 0 e A S L, M S
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argument preceding (5.14) can be repeated.

It remains only to verify the result for the case r =14, k = 2,
From equality in (5.11) we have, by Greene's result, that [p,1] is
a modular plane for every point p of L. If there is a nontrivial
line a in 1, the argument above gives an isthmus q on one of the
two planes through a, and we are finished as beforec. If every line

has two points, then by equality in (3.4) we have W, = (2) = 2n -2,

which implies n =r =4, so L= F, ¥ Q(2,2).

i B
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6. Proof of Theorem 2

We consider first the case k = r in Theorem 2. Let u+(0,x) =
(-l)p(x)u(o,x), a positive integer. If p is a point of L, we have

by Weisner's theorem [10],
(6:1) w'(0,1) = £ u¥(0,0),

where the sum is over all copoints ¢ of L such that c X p.

Proposition 1. If L is a geometric lattice of rank r with n

points, then

(6.2) w'(0,1) >n -r +1,

with equality iff L T Q(n - r + 2, r-2).

Proof. The proof is by induction on r. Equality holds in (6.2) for

r = 2, so assume inductively that (6.2) holds for r' <r, where r > 3.

If ¢ 1is a copoint of L, let ac) denote the number of points in

[0,c]. By the inductive hypothesis,
(6.3) u'(0,¢) >afe) - r + 2.
Summing (6.2) over all points p of L, and using (6.3), we obtain

(6:4) n p*(0,1) > F (n - a(e))(ale) - r + 2).
¢ copoint

But for any copoint ¢, r -1 <a(e) <n-1, so

(6.5) (n - afc))(a(c) =r +2)=(n-=-121-ae))(a(c) - (r-1)) +n-r +1

Zn-r'"l’

with equality iff a(c) = r-1 or n-1. Thus from (6.4), (6.5), and (3.3)
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W
(6.6) u*(0,1) o i;l (n-r+1)>n-r+1.

To show that equelity in (6.2) implies L T Q(n - r + 2, r-2),
we again argue by induction on r. The result is trivially true if
r = 2, so essume r > 3, and that equality holds in (6.2). By (6.6),
W._, =n, and from (6.5) every copoint of L has either r-1 or
n-1 points. If all copoints have r-1 points, then either

L= ¥ T Q(2,r-2), or else L is the truncation to rank r of a free
' = n
geometry F , n>r. But in the latter case, W _, = (r - l) > e TE

some copoint c¢ contains n - 1 points, the point p not on c¢ is
an isthmus of L. Since equality must hold in (6.3) for every copoint,
[0,c] ZQ(n - r + 2, r=3). Then L = [0O,c] X [b,p] ZQ(n - r + 2, r2),
and the lemma is proved.

Let A, = {x €L]p(x) =i} and for x €1, let a(x) be the
number of points in [0,x]. Define

W - *(0,x).
s a(x) u'(0,x)

We then have

Proposition 2. Let L be a geometric lattice of rank r with n

i |
! points. Then
+
. (6.7) m; >h-r+ 1)wk_l + (r-k) W 1? 1<k<r.
P ; Proof. The case k =1 is trivial, and the first inequality in (6.6)
{ } is the case k =r, so assume 2 < k < r-1l. Then by applying (6.1)
to the interval [0,x] below, we obtain
|
]
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z T wt,x) = T T ut(o,x)
xEAk pe\l p€A1 xe\k
xX>p xX>p

w4

z 2 (2 %))
P& x& ¥y

©p  pXy<x

R 7 - S
vy ) P& x&

PXy x=pW

=t uHo,y)n - aly))
yeA 1

= wOy)n-aly)-r+x)+ @k) T uro,y).
yeA A WY

We next apply (6.2) to the interval (0,y].

m;?_ T (a(y)-k+2)(n-a(y)-r+k)+(r-k)w;
Y

+
> (n-r+1)w r - K)w, ,

x-y *
the last inequality following since k - 1 <a(y) <n-r +k -1 for

y of rank k - 1, so

(aly) - k + 2)(n - aly) - r + k)
=(fy) ~k+1)n-r+k-1-afy)) + (n-r+1)

> ne-r+1,

We consider now inequality (3.9), arguing by induction on k.

The case k =1 is trivial, and by (6.2) we may assume k <r, so

let 2 <k <r-1 and suppose (3.9) holds for all k' < k.
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Let p be a point of L. Applying (6.1) to [O,y], for

y € A2 ¥ > Py ve obtain

%,
]

it T wro,x) = T uwto,x) + T w(0,x)

k x€l\k x€Ak X
1p BVp
= T ufo,x) + T u'(o,y).
x€hy Y€
xX>p yop

Summming over all points p, and using (6.7),

mt = T oax) 5O, + T aly) w0y) = m e m,

k
xGA.k yGAk+l
+ +
> (n-r+l)(1»lk_l + wk) + (r--k)wk_l + (r--k-l)wk .

We now apply (3.4) and the inductive hypothesis, obtaining

+ +
(r\--r+1+k)wk > (n-1-+l)(wk_1 + wk) + (r-k)wk_1

6.8) > (-r1){E2)(n-r) + (T)) + CB)mer) + )

+ @0 {GD ) + (1))
- (-r) {CHner) + O
+e{hen + Q)
after simplification. Thus

(reras 2 (erao {GTD0or) + GO},

so (3.9) follows.




¥
i
&

To complete the proof of Theorem 2, assume ecquality holds in
(3.9) for some k, 2 <k <r. If k =r, the result follows from
Prop. 1, so suppose 2 <k <r-l. The proof is by induction on r.

3, k = 2. From (6.8), equality in (3.9)

1}

Consider first the case r

implies w2 =n, so L is & modular plane, and therefore I, ¥ Q(n-1,1)

or L = P(n,0). But the latter is impossible (&), hence I = Q(n-1,1).
Assume inductively that the result holds for r' < r, where

r > 4. Then equality in (3.9) implies equality in (6.8), so W, W

attain the lower bound in (3.4). At least one of k - 1, k satisfy
2 < k' < r-2, so by Theorem 1, either L ¥ Q(n-r+2, r-2) or

L

P(n-r+3, r-3). But k > 2, so again the latter is impossible,

and the proof is complete.
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